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Optimal Pricing and Advertising Policies

for New Product Oligopoly Models

b
3
:: by
b

Gerald L. Thompson and Jinn~Tsair Teng

l&// ABSTRACT

In this paper our previous work on monopoly and oligopoly new product

models is extended by the addition of pricing as well as advertising control

SENY VRV TUNE YU ¥ o

variables. These models contain Bass's demand growth model, and the Vidale-

S
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Wolfe and Ozga advertising models, as well as the production learning curve

et

model and an exponential demand function.
The problem of characterizing an optimal pricing and advertising policy
2; over time is an important question in the field of marketing as well as in

the areas of business policy and competitive economics. These questions are

¥ particularly important during the introductory period of a new product, when
%

‘% the effects of the learning curve vhenomenon and market saturation are most
y pronounced.

\
We gsgsider first the monopoly case with linear advertising cost, ex-

ponential demand, and three different pricing rules: the optimal variable
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pricing, the instantaneous merginal pricing, and the optimal ccnstant pricing
rules. Several theoretical results are established for these rules including
the facts that the instantaneous marginal pricing rule is a myopic versiom of
the optimal pricing rule and the optimal constant pricing rule is a weighted
average over time of the instantaneous marginal pricing rule. Another sur-

prising result i{s that, after the market is at least half saturated, a pulse of
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advertising must be preceded by a significant drop in price. Numerical
solutions of a number of examples are discussed.

Oligopolistic models are analyzed as non-zero-sum differential games
in the rest of the paper. The state and adjoint equations are easy to write
down, but impossible to solve in closed form. Hence we describe how to
reformulate these models as discrete differential games, and give a numerical
algorithm for finding open loop Nash solutions. The latter was used to solve
three triopoly models. In each case it was found that optimal prices and ad-

vertising rates start high and steadily decline.
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Oligopoly

Control Theory
Advertising models
Production learning curve

Differential games
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Optimal Pricing and Advertising Policies
for New.Product Oligopoly Models
by

Gerald L. Thompson and Jinn-Tsair Teng

1, INTRODUCTION

In a previous paper [20] we considered monopoly and oligopoly ad-
vertising models for a new product during its introductory period when the
production learning curve phenomena is most pronounced. The models given

in that paper were based on Bass's classic demand growth model [1, 3], the

Vidale-Wolfe [22] and 0Ozga [15] advertising models, and the production

learning curve model. [9, 21]. Optimal advertising policies were found

for the monopoly models by applying Green's theorem. However, we found that
the oligopoly (specifically triopoly) non-zero-sum differential game models we
considered did not have closed form solutioms so that we were only able to
obtain computer generated and graphed solutions for specific numerical in-
stances of the models. Nevertheless these solutions were intuitively reason-
able and informative.

In the present paper we extend the results of our previous paper to
models in which price ag well as advertising is a control variable. In
Section 2 we discuss the monopoly case in which we add an exponential demand
function to the state equation in a manner similar to that proposed by
Robinson and Lakhani in [15])., With that model we discuss three different
pricing rules, the optimal variable pricing rule, the instantaneous marginal
pricing rule, and the optimal constant pricing rule. The reason for discussing

these three pricing rules is to determine which pricing rule is the best for dif-

ferent objective functions. For instance, the optimal variable pricing rule is
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the best policy for maximizing net profit without consideration of the transaction
costs of changing prices; the instantaneous marginal pricing rule is the best for
maximizing the ending cumulative market share; and the optimal constant pricing
rule gives the largest profit if we consider the transaction costs of changing
prices, provided the price elasticity of demand is sufficient large.

In Theorem 1 of Section 2.1 we prove several results that hold for all
three pricing rules. First, that optimal advertising is zero when the market is

almost saturated. Second, a higher value of the production learning coefficient

or a lower value of the demand coefficient causes the optimal advertising rate

to be higher. Simple economic interpretations are as follows: (1) A higher

value of the production learning coefficient implies a lower value of productior
cost. Hence, in this case we can afford to do more advertising and increase the
profit. (2) A lower value of the demand coefficient implies that demand is sensitive
to the advertising rate. 1In this case, it pays to do more advertising. Third,

that high values of the production learning coefficient or of the demand co-
efficient cause the optimal price to be low. Simple economic interpretations are

as follows: (1) A higher value of the production learning coefficient implies a

: lower value of production cost. In this case, we can lower the price to increase

the sales volume and profit. (2) A highker value of the demand coefficient implies

w

a higher value of the price elasticity of demand. In this case, we have to lower

g

;.4 the price in order to increase the sales voiume and profit. Fimally, it is shown
‘ that after the market 1s more than half saturated, no advertising will be done
unless preceeded (and usually accompanied) by a significant price drop.
F?‘ In Section 2.2 we show that the instantaueous marginal pricing rule is
’

"myopic" in that it differs from the optimal variable pricing rule by the

factor =), where XA 1is the adjoint variable. The adjoint variable satisfies
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a differential equation, and its value depends on future demands and advertising

expenditures. Theorem 2 characterizes the optimal advertising policy for the
instantaneous marginal pricing case.

In Section 2.3 we obtain the optimal constant price rule and observe
that it can be interpreted as the weighted mean value of the instantaneou§
marginal pricing rule. We also characterize in Theorem 3 the optimal adver-
tising policy in a way that is similar to the marginal pricing case. Theorem 4

asserts that for the optimal constant pricing rule, the optimal advertising

trajectory will have at most one interval, or pulse, of advertising. This same
result still holds under slightly modified assumptions for the marginal pricing

rule. However, it definitely is false for the optimal variable pricing rule.

A counter-example is ﬁresented in the next section.

In Section 2.4 we discuss numerical solutions of 10 different examples
with randomly generated parameters. We present graphical solutions for
Example 2, which has the '"'two pulse'" advertising solution alluded to earlier.
In all of these 10 examples, the optimal selling price started high and
< steadily decreased with time. Such behavior is in accordance with observed
experience with new product introductions [8]. However, we also were able to
construct an example for which the optimal selling price increased to a peak
and then decreased.

In the rest of the paper we discuss oligopolistic versions of price ad-~
vertising models in which the advertising costs are quadratic and the price

is assumed to be determined by the dominant firm. The state equations are

straight forward extensions of the monopoly case. However, the adjoint equa-
tions and optimal advertising and pricing policies are so complicated that it

is impossible to find closed form solutions for the solutions. Hence we were
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forced to reformulate the problem as a discrete non-zero—~sum differential game
model, solve it and plot the solution with the aid of a computer. 1In Section 3.1
we describe the numerical algorithm for finding open loop Nash solutions to the
model, and in Section 3.2 we discuss the numerical solutions of three triopoly
examples. In all of these examples the optimal price steadily declined. It

was also true for these examples that the optimal advertising starts high and

steadily decreases with time.

2. MONOPOLY MODELS

For many marketing situations, advertising is the most important strategic
element-in determining the market share achieved by a firm. For most consumer

products during their introductory phase there frequently is little change over

time in the form of the product, the channels of its distribution, etec. Price
is another important element in a marketing strategy which influences both

the demand for and the profit obtained from a product. Here we shall comnsider
demand growth models in which both advertising and pricing are control variables

which can determine profits and market share.
For simplicity, economists generally assume that the demand of a product

is a linear, a power, or an exponential function of the price of the product.
In this section, we assume the demand is an exponential function of the price
since there is little significant difference in results obtained from using
any of these assumptions. We shall explore the optimal advertising monopoly
models under optimal variable, instantaneous marginal, and optimal constant
pricing policies and compare their performance with several different parsmeter

settings.

2 b AT @ g
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To define the monopoly models we introduce the following notation:

4 T = terminal time
p = discount rate
| x(t) = cumulative market share at time t; we assume
x(t) € (0,1] and =x(0) = X,
e(t) = cy(xy/x(e))’
= learning curve production cost at time t; S

; X, and f (the learning coefficient) are constants;

we assume c(t) > 0, X, >0, c(0) = ey > 0, and 0 < f < 1.
u(t) = advertising rate at time t; we assume u(t) ¢ [0,U],

o where U 1is a positive constant which is the maximum permissible
advertising rate. (U is determined by the advertising budget,
media limitations. etc.)

p(t) = prices at time t
3
* ou(t) + B = linear advertising cost; we assume a and B are constants,

: ) and a > 0, B8 > 0. The number B8 represents the fixed costs 7

such as, listing the product in the catalog, registering a new
:_; brand name, etc.
-%; A(t) = the adjoint variable.

As in [20]), we assume that the marginal sales volume, x = dx/dt,

is proportional to the advertising rate as follows:

X~ (yytru) (1-x) + (vq + YW (1-x)x , (1)
————t | U ——
Advertising Advertising
affects affects

innovators imitators
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rewriting, we can give another interpretation:

x ~ (1-x) (] + YU + vg% + y,ux) a’
Satura~ Main Inter~-
tion effects action
effect effect

where Yys Yo Y3 and Y, are nonnegative constants. As noted in [20], the

right hand side of (1) is a combination of Bass's demand growth model (in

which Yo=Y, = 0), and the Ozga {15] (in which Y1 =Yy =Yy = 0) and Vidale-
Wolfe [22] (in which Y=Yy =Y, = 0) advertising models. Horsky and Simon

have formulated a similar model using the natural logarithm function for adver-
tising effect [10]. Following Robinson and Lakhani [16] and Dolan and Jenland {7],

We assume that the demand is proportional to an exponential function of the price,

i.e.,

x ~ e 5P (2)

where the demand coefficient g is a given positive constant. Combining these
equations (1) and (2), we obtain the state equation of a monopolistic adver-

tising and pricing model as follows:
. - - _ _gp .
x = [(y; + v, (1-x) + (v5 + y,u) A-x)x]e™™", x(0) = x; . (3)

Subject to (3), the monopolist wants to maximize his profit. Mathe-

matically his problem is equivalent to the following optimal control problem:
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T
maximize {J = f e1)t[(p-c)x ~ (au + B)]dt} 4)
O<u<U;p>0 0

subject to (3), and the definition c(t) = co(xolx(t))f.

Note that: (1) Horsky and Simon [10], Ozga [15], and Vidale and Wolfe[22]

treated advertising as the only control variable. Basgss and Bultez (3], Dolan

and Jeuland (7], and Robinson and Lakhani [16] considered price as the only control

variable. 1In this paper, we discuss a model in which both pricing and advertis-
ing are control variables. Kotowitz and Mathewson [12] have a slightly different
monopoly model which does not consider.price and advertising simultaneously

and does not have a learning curve production function. (2) Since p + + =
implies x =+ 0 in (2) and J + 0 4n (4) and p SO implies J < 0, we know
that the constraint p 20 in (4) is redundant and p = 0 cannot occur in any

optimal solution of the model.

2.1 Optimal Variable Pricing Rule

To apply the maximum principle, we formulate the current-value Hamiltomian
{13, 19] using the adjoint variable as follows:
R = (p~c)i - (au + B) + Ax
= [(p-&k)(vzﬂax)(l-x)e'gp ~ alu + (p-c+k)(y1+y3x)e'gp-8. (5)

The current-value Hamiltonian is linear in u 8o that the optimal control rule

for u 1is bang-bang, that is,

o

0 if D«

o

u = undefined {if D= (6)

i) if D> 0

ey

T Y U AR RN . M- s O i ¢ - As 3 v
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where
D = (p=ctd) (v, 4y x) (1-x) - oe®P 7

is the advertising switching function,

To find the optimal control rule for the price p we maximize H ty
differentiating it with respect to p and set the result to zero which gives

the optimal variable price rule:

1
=c+=-1. (8)
P =ty

The current-value adjoint variable A satisfies the following dif-

ferential equation:
*

X = oA - g% = pX - [(Y3+Y40)(1-2X) - (*{f’*{fﬂ](é)e'gp &)
together with its transversality condition A(T) = 0. An economic interpreta-
tion of XA can be found in {19]. Briefly, the value of Ai(t) at time ¢t
evaluates the future effects on profits of making a small change of x(t) at
time t. Its role in optimal control theory ié similar to the role of dual
variables in linear programming. The sign of and values of X as well as the
values of the optimal variable price rule p* are impossible to predict. How~
ever, from our computational experience, we found that )\ was always negative
when g was sufficiently small. 1In the derivation of (9) we used (8). Equation
(8) can also be used to rewrite (7) as

*
D = %(yz+yax) (1-x) - 0e®P (10)

which 1is the simplified form of the switching function.
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Equation (6), (8) and (10) imply the following basic results (which

will also hold true for the marginal or optimal constant pricing rules to be

discussed later.)
Theorem 1. (a) When the market is almost saturated the optimal ad-

vertising rate must be zero, 1i.e.,

*
u =0 as x-+1 ., (11)

(b) A higher value of the learning coefficient f or a lower value

of the demand coefficient g causes the optimal advertising to be higher;

i.e.

o
u when f4 or g4 (12)

(c) A higher value of the learning coefficient f or cf the demand !

coefficient g causes the optimal price to be lower; i.e.,

(13)

*

P ¢ when £+ or gt .

D_1_Y
=35 2Y4 then a necessary condition that the optimal

policy should change from no advertising to positive advertising is that there

e

@ If x> x

should first be a price drop.

Proof. The proof of (a) and (b) is trivial by lookiag at (8) and (10);

and the proof of (c) follows quickly from (8).
To prove (d) we note from (10) that the switching function D is the

*
difference between the function h(x) = %(yz + ydx)(l-x) and 0e®? . 1t is

easy to show that h 1s a concave function with its maximum value at the

Y
argument xD -A% - E;g <3 Hence h 1s strictly decreasing for x Z_xD.
4 *

so that from (6) advertising is not

Therefore if x > x and h(x) < ae®P
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optimal, the only way the reverse inequality can hold which would make ad-
vertising optimal, is for p* to decrease faster than h(x) decreases over
;. time. That is, a price drop must precede an advertising pulse.

Note that xD is non positive when Y, 3_y4, i.e., when the advertising
coefficient for the innovators is greater than the advertising coefficient for
the imitators. 1In this case price drops are always needed in order to change
advertising rates. In the other case, when Yy < Yy that is when advertising
S has more effect on imitators than it has on innovators, price drops are not needed
as frequently,

In the later numerical examples we will see examples of the two results
ctated in Theorem 1(a) and (d).

Because equations (3), (6), (8), (9), and (10) form a complicated two

point boundary value problem, it is impossible to find a closed form solution

13 for x when the optimal variable pricing rule is used. However, we can reformu-
late the problem as a discrete control problem, let a computer solve it and
plot the resulting solutions. A simple algorithm can easilv be devised to

solve this discrete problem, but, because it is similar to the algorithm used

Ty to solve the triopoly problem presented in Section 3, we do not give details
b,
!:f here.
¥ 2.2 Insgtantaneous Marginal Pricing Rule
5 Suppose we keep the optimal advertising rule (6), but change the price
t

rule from (8) to the instantaneous marginal pricing rule,

Instantaneous Marginal Revenue = Instantaneous Marginal Cost

or

=2 [px] = 52 [cx] ;
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"4 then after differentiation and making some algebraic manipulations we have
- P+ = c +é'- (14)

which is similar to the optimal variable pricing rule, p* given in (8)
except for the term -A. J
Note that in this case, the prices always decline as the production cost
decreases since g 1s a constant. This is sometimes called "pricing along
the learning curve," see [2,8].
It is extremely difficult to find a closed form solution for the optimal
e advertising rule when the marginal price rule (14) is used in (3) and (4) by
applying the maximum principle. However, since u appears linearly in both
the state and the objective functions we can apply Green's theorem as we did
in [14]. From the state equation (3) we obtain the formal relation
eBPdx- (y +y,x) (1-x)dt

* ude = (Y2+'v4x) (1-x)

. (15)

Substituting this into (4) we can rewrite the objective function as a line

’;5 integral along any smooth curve rl in the (t,x) space as follows
" 3, =] (pdx + qdt) (16)
4 1 Pl

-

A ‘ where the functions P and Q are given by

o l‘_l_ - otegp -pt (17)
' P = ‘ig (v, %) (1-%) ]e
.‘.

i} [(Y1+Y3X)a _ B] Pt (18)
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let T be a simple closed curve which bounds a region R. Applying

K
Green's theorem we obtain
P 4x -0
Jo o= [f Gpax~32de}
R
= [ e Pr(x)dtdx (19)
: R
' where
i 8p (Y0 Ya=Y1Y,)
! IGx) = o [- §'+ (v +$ex)(1—x) ] -—22 % . (20)
A and p is given by (14).
Lemma 1. Let Fl' and Fz be the lower and upper feasible arcs of a
simple closed curve T = Fl —FZ, and let R be the region enclosed by T.
If I(x) >0 in R then the lower arc Pl is more profitable than the
jr - upper arc FZ. Similarly if (I(x) < 0 in R then F2 is more profitable than Pl.
. Proof. Since JF = JF - Jr the result follows easily from (19). For
: 1 2
- analogous arguments see [14, 19].
: Lemma 1 and (14) now imply the following closed form solution for the
3;5 optimal advertising.
;3: Theorem 2. If the firm adopts the marginal pricing rule (14), then the
3#‘ optimal advertising control is
"
. 0 1f I(x) > 0
*
u ={ undefined if I(x) =0 (21)
i U if I(x) <O '
A4
]
1+gc0(x0/x)f a ( - )
- where: I(x) =0 (- ¢+ o™ | - 2 .
K 24 (v v, %)

.
Yo W P s v
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Coroll#gx 1. (a) u* =0 as x -+ 1.
(b) u* 4+ when f+ or gt.
Proof. Since I(x) >0 as x> 1, and I(x)+ when ft or gt ,
the results follow immediately from (21).
Note that Corollary 1(b) means that products which can be made more
efficiently or which have higher consumer appeal can support a higher level of

advertising; this is an intuitively appealing result.

2.3 Optimal Constant Pricing Rule

If the firm wants to maintain its price constant over a given time-

horizon, it would choose an optimal constant price, ;, such that the follow-

ing conditions are satisfied:

Hqeo and &L <o , (22)
Jp apz

where J 1is given as in (4). After carrying out the differentiations and

making some algebraic manipulations, we have the unique optimal constant price
T T
D= [ e pt(c + %)xdt | e P xde (23)
0 0

which can be interpreted as the weighted mean value of the marginal pricing
rule (14).
Similarly, we can apply Green's theorem as was done in 2,2 and get the

following closed form solution for the optimal advertising given any constant

price rule.
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Theorem 3. If the firm meintains its price constant over T horizon

time, then its optimal advertising control is

0 if R(x) >0
u' ={ undefined 1if K(x) = 0 (26)
U 1f K(x) <0
where
- £ e®P aly,Y3=1,7,)
R(x) =p[-p + c (x./x)" + ] - = (25)
0o vy, x) (1-x) (v2+vax)2

Corollary 2. (a) u* = 0 as x -+ 1.

(b) u*+ when f+ or gt .

By testing the limits of X(x) and by calculating its second derivative
we can easily establish the following results.

Lemma 2. (a) if s %ps f, and Y, + Y, are positive then
K(x) +* as x>0 or 1.

() If v,v37, =0 or y,Y; <Y,v, then K'(x) > 0 so that K(x)
is a convex fumction of x.

The proof of Lemma 2(a) is obtained by taking the limit of the expression
in (25). The proof of Lemma 2(b) is obtained by considering the various cases
in which the hypotheses are true. Details are omitted.

Note that the hypotheses of Lemma 2(b) are true for both the Vidale-
Wolfe {22] and the Ozga ([15] advertising models. In fact, if o 1is sufficiently
large then K(x) 1is convex even though the hypotheses of Lemma 2(b) do not hold.

Assuming the truth of the hypotheses of Lemma 2(b), it follows that there
is exactly one argument x in the open interval (0,1) which gives the global
minimm of K(x). If K(x) < 0 then there exist exactly two arguments x, and

x such that

2
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K(xl)-K(xz)-O and 0<x1<§<x2<1. (26)

Because K 1s a convex function it is easy to find x and Xy by using
Newton's or some other search method.

Lemma 2 and Theorem 3 now imply the following theorem.

Theorem 4. If the assumptiéns of Lemma 2 hold then there are only two
different optimal advertising strategies:

(a) If K(x) > 0 then u* 2 0 is the optimal control. 27

(b) If K(X) < 0 then the optimal advertising comtrol is

0 if 0 <x<x

. 1 2 2
u = undefined 1if x = X, orx, (28)
U if Xy <x<x

This Theorem tells us that there are only three possible different kinds
of optimal advertising policies as follows: (A) No advertising at all over the
whole time horizon; (B) Advertising during an initial time, then no advertising
when the market becomes saturated; and (C) No advertising, then advertising
finally no advertising again.

Theorem 4 is still true for the marginal pricing rule if we make some
slight modifications of the assumptions of Lemma 2. But Theorem 4 is not true
for the optimal variable pricing rule in (8) in genmeral. For a counter example

gee Figure 2 in Section 2.4.

2.4 Comparigons among Optimal Variable, Optimal Constant Price, and Instantaneous

Marginal Price Rules

The definition of a monopoly model requires the setting of 13 parameters

(Yl’YZ’YS’YA’g’f’a’B’ xo,co,p,T,U) so that it is very difficult to predict

P ey e ———n
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comparative behavior or to prove general results comparing the performance of
the optimal variable, optimal constant, and instantaneous marginal price
strategies. It {is also clearly impractical to'explore numerically very much
of the parameter space. Therefore, we have chosen 10 random examples whose

parameters are given in Table 1, and computed the discounted profits and the

ending cumulative market shares fcr each of the three different pricing
strategies; these results are shown in Table 2.
Table 2 indicates that use of the optimal variable pricing rule gives

the largest objective value, use of the optimal constant pricing rule is next,

and use of the instantaneous marginal pricing rule gives the smallest value.

But the order is reversed when the ending cumulative market shares for each rule
are -compared. In many cases the size of the ending cumulative market share is
extremely important for the future of a firm (e.g., to maintain leadership in
other'markets), see Fig. 2-4.

In Table 2, examples 2, 4, 6, and 7 all have g = .1 and all indicate
that the optimal variable pricing rule gives larger profits than the other two
rules (provide& we ignore the costs of changing prices). However, for examples
1, 3, 5, 8, 9, and 10 in Table 2, g 1is always greater than .1, and the three
pricing rules yield the same total profit and ending market share. The reason
for this difference is that g is proportional to the elasticity of demand, sc
that a small value of g means a small elasticity of demand, i.e., demand is
not sensitive to price. (For instance, if g = 0, then demand is completely
independent of the price.) Therefore to maximize profit a high price strategy
is best. On the other hand, if g 1is large then the elasticity of demand is

large too, so that demand is sensitive to price, and the marginal price is almost

equal to the marginal production cost, see (14). So we cannot adopt a significantly

higher or lower price than (14). So there is little significant difference among

the three pricing rules if g 1is large.




-17-

¥ We were unable to prove anything about the properties of the pricing
trajectory p(t) when the model employed the optimal variable pricing rule given

in (8). However, from our computational experience we know that the optimal

variable price, as well as the marginal price, decreases in time in eech of

the 10 cases given in Table 1. We were also able to find a case (shown in
Fig. 1) in which the optimal variable price begins with a low initial price,

then increases in time, and finally decreases, a result which was similar but

1 less extreme than that previously by Robinson and Lakhani [16].

In general, the advertising trajectory u(t) when using either the
constant price or marginal price rule obeys Theorem 4, in which there are only
three quantitatively different kinds of optimal advertising policies as follows:
(A) No advertising at all over the whole time horizon; (B) Advertising during

an initial time, then no advertising when the market becomes saturated; (C) No

LI advertising, then advertising finally no advertising again. For examples, see
‘ Fig. 3 and 4.
) However, the advertising trajectory for the model which uses the optimal

variable price rule (8) is very complicated. As an example, we present graphically

’l‘ in Figure 2 the computer generated solutions of Example 2 of Table 1 and explain
g why they are so complicated. From (10), we know the switching function of u
*

A *
; is D= (YZ + Yax)(l-x)/s - 2e8? . At the initial time, ae®P 1s greater than

(yz + yax)(l-x)/g so that no advertising is done in this period as shown in

Figure 2 and 5. When x reaches about 0.23, the optimal variabdle price dips
*

rapidly and 2e8®  becomes smaller thanm (YZ + Yax)(l-x)/g so that using the
*
optimal control rule (6), we set u = 10 and the cumulative market share x

*
increases rapidly as shown in Figures 2 and 5. Such an impact makes price p
*

go down sharply too such that ae®?  1s lower than (72 + yax)(l-x)/g again.
*

8  4s always greater

When x 1s close to T, x 1s approaching to 1, and ae
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than (yz + Yax)(l-x)/g so that there is no advertising at the terminal time.
This example also illustrates Theorem 1l(e) since a rapid decrease of the optimal
variable price on two occasions causes pulses of advertising, see Figure 2 for
illustration.

Comparison of the solutions of the two examples in Figures 1 and 2 are
interesting. Note that in Figure 1 the inequalities Yy < Y, and Yy <Y, hold

while in Figure 2 the reverse inequalities hold. In other words in Figure 1

innovation is much less important than imitation while in Figure 2 the reverse
holds. In Figure 1 advertising is always 0, and price starts relatively high,
rises slightly, and drops off somewhat at the end, which means the monopolist is
passive and merely offers his product to the marketplace and waits for knowledge
about it to diffuse through imitation only. In Figure 2, the monopolist is very
active doing both "skimming pricing” and "pulse advertising." He begins with a
high price, skimming off profits from the early innovators; then later he makes
sudden drops in price followed by intense advertising campaigns to encourage new
buyers and increase sales volume. In between these sales campaigns, the imitation

effects continue to increase sales.

> A%

Y AR L

N
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Samples Y, Y, Y3 Y, o B x5 ¢, £ u g T P

Range .1-.4 .5-.9 .1~-.4 .5-.9 .05-.10 0 .1-.5 10-30 .1-.5 5-10 .1-.5 20-150 .001-.005

1 3 6 .2 .9 .05 0 .5 1 .2 8 .3 23 .001
) 2 4 .7 .1 .5 .09 0 .2 1% .1 1 .1 56 .005
3 4 .9 .2 .8 .08 0 .4 30 .1 2 42 .002
4 .2 .8 4 .6 .0 0 1 20 .4 6 .1 81 .001
5 4 .8 .3 .7 .06 0 .2 21 3 4 119 .002
6 1 .5 .3 .6 .07 0 .4 30 .2 1 149 .002
7 .3 6 .1 .5 .09 O .3 2 .5 10 .1 109 .003
i 8 1 .8 .4 .5 .05 0 .5 21 .2 .5 90 .002
9 .2 6 .1 .8 .06 0 .4 21 .2 277 .003
10 3 6 .1 .8 05 0 .1 11 .2 7 .3 135 .003
o Table 1. Randomly chosen parameters for 10 examples solved by
a discrete control monopoly model for all three
pricing rules.
. g‘:::;‘;‘s AR 319, %o (T) /x_(T) x (D) /x_(T)
. 1 1.00 - 1.00 1.00 1.00
. 2 0.62 0.55 0.94 1.00
- 3 1.00 1.00 1.00 1.00
y 4 0.53 0.49 1.00 1.00
B 5 1.00 1.00 1.00 1.00
o 6 0.62 0.49 0.73 0.98
b 7 0.80 0.68 0.97 1.00
Y 8 1.00 1.00 1.00 1.00
'5 9 1.00 1.00 1.00 1.00
; 10 1.00 1.00 1.00 1.00
)'. Average 0.86 0.82 0.96 1.00
" seandard 0.20 0.24 0.08 0.01

Table 2. Ratio Values of the Objective Values J, and the Ending
Cumulative Market Shares x(T). Note that the subscripts
0, c, and m indicate the optimsl, constant and marginal
A pricing rules, respectively. '
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3. THE OLIGOPOLISTIC PRICE LEADER ADVERTISING MODELS

Here we shall extend the model from the one player case to the n plaver

price advertising non zero sum differential game.

The procedure is similar to

that we employed previously in

To define the oligopoly

{20].

models we first state the following notation:

n = number of players
T = terminal time
2 Di = discount rate for player i
xi(t) = cumulative market share for plaver 1 at time ¢t; WUe
y azsume x,(t) > 0 and x, (0) = x;9 > O.
; x(t) = 1Elxi(t) = cumulative total production at time t;
We assume O < x(t) < 1.
Wi = salvage value constant for plaver i.
.‘ fi
. c, = CiO(xiO/xi) production cost for player 1 at time ¢t
0 and fi are constants; We assume ci(O) =< > 0, and
: fi > 0.
%: ui(t) = advertising rate for player 1 at time t: We assume
4 ,: ui(t) > 0.
?'i pi(t) = price for player i at time ¢t
_ ;; Ai - aiui + Biu1 + Gi = quadratic advertising cost for player i;
'? We assume ai, Bi ana 61 are constants, and ui > 0.
’; Note that in this section we use a quadratic advertising cost instead of a
.
linear advertising cost as in Section 2. (We couldn't obtain closed form solutions
‘Q‘ if we use a quadratic advertising cost in Section 2.) We also consider salvage
b values for each player for his cumulative market shares at terninal time T.
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We consider in this section a market in which there is a single selling

4
price, decided by the largest competitor, say Firm 1, and assume first that the
E demand for each player's product is linear in the price. The state equation for
plaver 1 then becomes
x, = [(v +r,,u) (1-x) + (v, 4y, ,u) (1-x)x, ] u x, (Q)=x, . (29)
i i1 "i271 13 'i474i i Py le’ i i0
i where Yik for k=1,...,4 are nonnegative constants and PUl' le are the
upper and lower limits of Py> respectively.
If, as in Section 2, the demand is an exponential function of price, then
! the state equation for player i is
. “8iP) ‘
= [y trgou) (-x) + (Yi3+714“i)(1"x)x1]e »%,(0) = x. (30)
N where 8y is a positive constant for i = 1,...,n.
) Subject to one of the two Equations (29) or (30), Firm i wants to maxi-
. mize its profit. Mathematically this is equivalent to maximizing
5 mwte Tt et fi. 2
- = Wie + - -
i A x, (T) foe SN CINES Tx;~(a,ui+8,u +6 ) }de . (31)
%
g The simultaneous maximization of all n functions Ji is impossible

in general. We shall apply the differential game maximum srinciple [4, 11]

find open loop Nash solutions as we did in [20]. Formal definitions of open loop
Nash solutions are given in [19]. We shall not give a complete formal definition
here. But simply note that an open loop Nash solution is a control trajectory
ui(t) for 4 =1,2,...,n, such that ui(t) maximizes Ji given the assumption
that all other controls uj(t) for 3 =1,...,i=1, 1 + 1,...,n are held fixed.

We formulate the current-value Hamiltonian for Firm 1 as follows:

1 My sagawegy Wegan.
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f n

i * 2 *
Hi-[pl-cm(xm/xi) Ixg-(aui+B.u +8.) + I Aijxj (32)

=1
where the current-value adjoint variables }ij’ i, = 1,2,...,n satisfy the

following differential equations:

oH

13 TPy My T %,

Also, these adjoint variables must satisfy the transversality conditions:

x i, = 1,2,..0,n . : (33)

Wi if =1

(T) = (34)

Aij
0 otherwise i, =1,2,....n .

By differentiating Hi with respect to ug and Py’ and setting the

results to zero, we find the optimal controls as follows:

[(p,=c.+A ) (v, +Y., X )(l~¥)321—:—3l— - 8,.1/(2a,)
17 i e B T i 1

i=1,2,...,n 1if state equations are (29)
-8;P

1°1
ug = Llpyme y, DGy otry, %) (I-x)e - 81/ ) (35)

1i=1,2,...,n 1if state equations are (30)
0 1f the above value is less than O.
[ ] n -
(Max{PLl; Uepmypiy = T Ayyigl/ Qi)

1f gtate equations are (29)

] n
P Max{0;c,+(1/g,) - j§1 Al8yRy/ (52D 11 (36)

if state equations are (30)

\
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It is impossible to find a closed form for the optimal advertising and
pricing policies for this oligopolistic quadratic advertising cost model. Thus,
we formulate the problem as discrete differential game problem and let the

computer solve it in a stepwise manner.

3.1 A Numerical Algorithm for Finding Open Loop Nash Solutions

After specifying the necessary conditions for optimality of the
differential game, there are n state equations (29) or (30) with n given
initial conditions and n2 transversality conditions (34) and the n
equations for the advertising control variables, and one other equation for
setting the pricing control variable.

Alecorithm for the oligopolistic advertising and pricing models with

quadratic advertising cost.

Step 1. Read the values of parameters.
Step 2. Calculate the starting values of ui(k), xi(k), and pl(k) from
k=0 to k=T step by step as follows:
ui(k) = asg in (35) and setting "kii tc zero.
x, (k) = x (%) + x, (k)
pl(k+l) = as in (36) and setting xLi to zero.
Store the values of U, Xy and pl for all i =1,...,n,
and calculate Ji as shown in (31) then go to Step 3.
Step 3. TFind the values of the adjoint variables backward in time by
using the values of U Xy and Py and the terminal conditions

on the adjoint variables, and substituting them in (33). Go to

Step 4.
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Step 4. Update the new values of U, X and P forward in time step by
step as follows:
ui(k) = as in (35)
xi(k+1) - xi(k) + ii(k)
pl(k+l) = as in (36).
When k+1 = T, calculate Ji as shown in (31) and go to Step 5.
Step 5. Check the difference between the new values of Ji (or ui or Bl)
and the previously found values. If there is no significant dif-

ference then the algorithm is terminated. Otherwise, update the

new Ji and go to Step 3.

Note that the above algorithm can solve other kinds of oligopolistic
advertising and pricing models with quadratic advertising cost. All that
is needed is to change the definitions of the various state and control
rules. 1In fact, it is a straightforward extension of our algorithm in [20]. It
also can solve Deal's duopolistic advertising problem [5], and the bilinear
quadratic differential game of Deal, Sethi and Thompson [6]. Intuitively, our
numerical algorithm seems to be easier to use than Deal's algorithm, because that
method requires guessing all values for each competitor's controls for each discrete
instant of time during the planning horizon. We also were able to solve the problems

over much longer time periods than was done in [5, 6].

3.2 Numerical Results

We have applied the algorithm of the preceeding section to find open

loop Nash solutions for many different triopoly encounters. In each case,

the algorithm exhibited stability and fast convergence in about 10 iterations.
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To state a triopoly problem, there are 48 parameters to choose so

! that it is difficult to predict behavior or to prove general results. How-
ever, if we suppose that all 3 firms have the same values of parameters

| except one, then we observed the numerical results shown in Table 3.

A Larger Value of the Following Parameter in the Triopoly
Models Causes Larger Values of U, Ji’ and xi(T):

3 Wis Y10 Yipo Vg4 £y

. A Smaller value of the Following Parameter in the Triopoly

,; Models Causes Larger Values of Uy Ji’ and xi(T):

A

Apr 4
B Table 3. Effect of Larger Values of the Parameters on the

. Controls, Objective Value and Ending Cumulative

' Market Shares in the Triopoly Models.

_ We have run many triopolistic price advertising cases byv using ome
E.; or the other of the two different state equations defined in (29) and (30).
‘%: The computational results obtained from each of those two different state
'é; equations are quite similar. It is sufficient to understand the outline of

A the optimal controls in our problems by assuming the state equations are as

in (29). Here we present two examples whose state equations are given in (29),
) and whose parameters are shown in Table 4. The values of the objective function
”T and the ending cumulative market shares for each competitor are shown in

Table 5. We also show in Figures 6 and 7, computer generated graphs for the

. optimal controls u,

and P for the state trajectories x, and x.
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kxample Player

Voot i a2y Y %t B iM%t TPy Pro Pmp
1 1 .004 .006 .004 .008 .01 ,006 O O .20 22 .4 150 .NO5 29 35 20
" " " " " " v on 15 25 .3 n " " " "

3 " " " " " " o 1028 .2 n n " n "

2 1 .004 .006 .004 .008 .01 .006 O 60 .20 22 .4 150 .005 29.5 35 20
" " 1] " " " " n .15 25 3 n L] " "w "

" [ " " ”" " . on 1028 .2 » " " " "

Table 4. Parameter Values of Two Examples of the One-Price Triopoly Problems.

Dittos indicate same values.

Objective Values Ji Ending Cumulative Market Shares xi(T)
Example
No. 1 2 3 1 2 3
1 0.807 0.422 0.157 0.366 0.272 0.202
2 10.563 8.212 5.972 0.402 0.328 0.254

Table 5. Objective Values Ji’ and ending Cumulative Market Shares xi(T), for
the two Triopoly examples in The Advertising and Pricing Model.

In Example 1, Firm 3 has the smallest beginning market share and learning
coefficient, and the largest initial production cost. This makes advertising not
worthwhile for Firm 3, as shown in Figure 6.

The ending market share is frequently important to the future of a firm (to
maintain market leadership). Of course, the way to increase the ending market
share for firm 1 {s to make the value of wi, the salvage value for player 1,

larger. In Example 2, we assume that all 3 firms have higher salvage values

w1 = 60 than in Example 1. In this case, the advertising rate of each firm is




™
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higher and the price is lower than in Example 1. As shown in Figure 7, the price
goes down to the lower bound, 20, at time 100.

} | Note that we also compare the profits and the ending cumulative market

| shares for the optimal variable and the instantaneous marginal pricing rules. The

results are similar to the monopoly case, i.e., 1f g 1is small enough then the

optimal variable pricing rule has a significantly larger profit than the others.
Otherwise, there is no significant difference among them. Here we present Example 3

whose parameters are shown in Table .6, and solve it by using the optimal variable

P
' and the instantaneous marginal pricing rules. those computer plots are shown in
Figure 8 and 9, respectively. In this example, we also used state equation (30)
- instead of (29).
Example 3 1 vyy Y Vi3 Yia %4 By 8 Wy %y S f5 o8y T 0
1 .3 .6 1 .5 .09 0o 0 0 .20 24 .4 .1 109 .003
| 2 - - - - - ~ = =« 5 - .3 - = -
) 3 - - - - - - =~ = 10 - A -
; Objective Values Ji Ending Cumulative Market Shares x{(T)
Player 1 2 3 1 2 3
. Optimal price 2.93 2.80 2.67 0.38 0.32 0.26
- Marginal price 1.43 1.32 1.21 0.39 0.33 0.27
-y
2
. Table 6. Parameters, Objective Values, and Ending Cumulative Market Shares i

of Example 3. Dashes indicate same values.
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4, Conclusions

The problem of characterizing an pricing and advertising policy over time
is an important question in the field of marketing as well as in the areas of
é business policy and competitive economics. These questions are particularly
. important during the introductory period of a new product, when the effects of
the learning curve phenomenon and market saturation are most pronounced.

In this paper, we have established a generalized pricing and advertising
model for a new product, which contains as special cases a number of other authors'
pricing or advertising models [1, 3, 7, 15, 16, 20, 22]. Theoretical results for
v the monopoly case were obtained. We also extended the monopoly model to an n

competitor differential game oligopoly model, and gave a numerical algorithm for
finding open loop Nash solutions.

Our oligopoly models can be extended in several different ways. For in-
stance, we may assume that the number of potential customrrs is dependent on both
advertising and price instead of being constant. Also, we could consider a model
in which each competitor sets his own price instead of single industry price being

decided by the dominant firm. Finally we could consider the problem of finding

closed loop Nash solutions instead of open loop Nash solutions to the model.
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